本發(fā)明屬于系統(tǒng)誤差配準(zhǔn)技術(shù)領(lǐng)域,適用于在多目標(biāo)跟蹤的同時(shí)需要進(jìn)行系統(tǒng)誤差配準(zhǔn)的系統(tǒng)。
背景技術(shù):
雷達(dá)組網(wǎng)所能帶來的巨大效益已經(jīng)得到了世界各國的公認(rèn),然而在多雷達(dá)組網(wǎng)跟蹤系統(tǒng)的實(shí)際應(yīng)用中,由于系統(tǒng)誤差的存在會(huì)導(dǎo)致不同雷達(dá)跟蹤航跡關(guān)聯(lián)融合失敗,導(dǎo)致同一目標(biāo)產(chǎn)生多條航跡,形成歧義。系統(tǒng)誤差是目前制約目標(biāo)跟蹤精度提高的主要因素之一,傳統(tǒng)的系統(tǒng)誤差估計(jì)技術(shù)認(rèn)為系統(tǒng)誤差是復(fù)雜、慢變、非隨機(jī)變化的,在相對(duì)較長的一段時(shí)間內(nèi)可看作是未知的“恒定值”,對(duì)系統(tǒng)誤差的估計(jì)多是根據(jù)設(shè)備測(cè)量物理機(jī)理構(gòu)造一定的系統(tǒng)誤差估計(jì)模型,在數(shù)據(jù)預(yù)處理階段進(jìn)行修正,這樣的系統(tǒng)誤差修正模型往往不準(zhǔn)確,導(dǎo)致系統(tǒng)誤差殘余較大,影響多目標(biāo)跟蹤和預(yù)測(cè)精度;如何充分利用目標(biāo)運(yùn)動(dòng)先驗(yàn)信息和測(cè)量信息,設(shè)計(jì)系統(tǒng)誤差實(shí)時(shí)檢測(cè)和配準(zhǔn)方法,不僅是實(shí)現(xiàn)目標(biāo)高精度實(shí)時(shí)跟蹤的關(guān)鍵所在,也是系統(tǒng)內(nèi)各部雷達(dá)信息有效融合必須要解決的難點(diǎn)問題。
技術(shù)實(shí)現(xiàn)要素:
本發(fā)明的目的在于提供一種基于實(shí)時(shí)質(zhì)量控制ECEF-GLS系統(tǒng)誤差自適應(yīng)配準(zhǔn)方法。旨在通過系統(tǒng)誤差的自適應(yīng)在線估計(jì)和消除,來提高組網(wǎng)雷達(dá)系統(tǒng)航跡關(guān)聯(lián)正確率和目標(biāo)跟蹤精度,改善系統(tǒng)性能。
本發(fā)明所述的基于實(shí)時(shí)質(zhì)量控制ECEF-GLS系統(tǒng)誤差自適應(yīng)配準(zhǔn)方法,是在地心地固坐標(biāo)系下(Earth Centered Earth Fixed coordinate-ECEF)利用廣義最小二乘(Generalized Least Square-GLS)算法進(jìn)行系統(tǒng)誤差自適應(yīng)估計(jì),具體包括以下技術(shù)措施:將待估計(jì)的系統(tǒng)誤差看作是狀態(tài)向量,獲得前后時(shí)刻系統(tǒng)誤差估計(jì)之間的狀態(tài)轉(zhuǎn)移方程,在此基礎(chǔ)上利用ECEF-GLS算法由測(cè)量數(shù)據(jù)獲得系統(tǒng)誤差自適應(yīng)估計(jì)的量測(cè)方程,并建立基于實(shí)時(shí)質(zhì)量控制ECEF-GLS系統(tǒng)誤差自適應(yīng)估計(jì)公式系,通過濾波技術(shù)對(duì)估計(jì)的系統(tǒng)誤差進(jìn)行實(shí)施質(zhì)量控制,利用迭代循環(huán)加快系統(tǒng)誤差自適應(yīng)估計(jì)的收斂速度,實(shí)現(xiàn)系統(tǒng)誤差的自適應(yīng)配準(zhǔn)。
本發(fā)明可在目標(biāo)跟蹤的同時(shí)實(shí)現(xiàn)對(duì)組網(wǎng)系統(tǒng)中雷達(dá)系統(tǒng)誤差的自適應(yīng)估計(jì)和消除,提高雷達(dá)多目標(biāo)跟蹤精度和航跡關(guān)聯(lián)正確率,擴(kuò)展系統(tǒng)的時(shí)間和覆蓋范圍,改善組網(wǎng)系統(tǒng)的多雷達(dá)信息融合效果和性能。
附圖說明
圖1是基于實(shí)時(shí)質(zhì)量控制ECEF-GLS系統(tǒng)誤差自適應(yīng)配準(zhǔn)方法流程圖。
具體實(shí)施方式
本發(fā)明的具體實(shí)施方式分以下幾個(gè)步驟:
(1)在地心地固坐標(biāo)系下(Earth Centered Earth Fixed coordinate-ECEF)利用廣義最小二乘(Generalized Least Square-GLS)算法進(jìn)行系統(tǒng)誤差估計(jì),需要利用兩部雷達(dá)的數(shù)據(jù),這里將兩部雷達(dá)前后時(shí)刻系統(tǒng)誤差的變化用狀態(tài)方程建模為:
β(k+1)=F(k)β(k) (1)
其中:F(k)為6×6的單位陣,β(k)=[ΔrA,ΔθA,ΔηA,ΔrB,ΔθB,ΔηB]'為k時(shí)刻由兩部雷達(dá)系統(tǒng)誤差所構(gòu)成的列向量;
(2)將兩部雷達(dá)在局部坐標(biāo)系下獲得的k時(shí)刻的目標(biāo)位置轉(zhuǎn)換到ECEF坐標(biāo)系下,
其中:(xAs,yAs,zAs)和(xBs,yBs,zBs)分別為雷達(dá)A和B自身在ECEF坐標(biāo)下的坐標(biāo)位置,(x′Al(k),y′Al(k),z′Al(k))和(x′Bl(k),y′Bl(k),z′Bl(k))分別為目標(biāo)在雷達(dá)A和雷達(dá)B局部坐標(biāo)系中的坐標(biāo),TA和TB分別為雷達(dá)站A、B的地理坐標(biāo)(BAs,LAs,HAs)(BBs,LBs,HBs)向ECEF坐標(biāo)系轉(zhuǎn)換的旋轉(zhuǎn)矩陣,這里Bis表示大地緯度,Lis表示大地經(jīng)度,His表示基于參考橢球體的高度,i=A、B,即
由式(2)、(3)可得ECEF坐標(biāo)系下兩部雷達(dá)對(duì)應(yīng)同一目標(biāo)的位置差為
對(duì)于同一目標(biāo)[Δxk,Δyk,Δzk]′=[0,0,0]′=0,將式(5)進(jìn)行一階的泰勒級(jí)數(shù)展開,并忽略高階項(xiàng)可得
0≈f(Ψ′(k),β′)+ζ(k)(β-β′)+κ(k)[Ψ(k)-Ψ′(k)] (6)
其中:Ψ′(k)為雷達(dá)A和雷達(dá)B在第k次采樣時(shí)刻對(duì)目標(biāo)的測(cè)量值,包含系統(tǒng)誤差和隨機(jī)量測(cè)誤差,Ψ(k)表示只考慮系統(tǒng)誤差不考慮隨機(jī)量測(cè)誤差時(shí)雷達(dá)A和B對(duì)目標(biāo)的測(cè)量值,則表示由隨機(jī)量測(cè)噪聲導(dǎo)致的誤差,β′為系統(tǒng)偏差的初始估計(jì)值,而
ζ(k)=[TA×LA(k)-TB×LB(k)] (7)
式中
這里ri(k)、θi(k)、ηi(k)分別為k時(shí)刻雷達(dá)i(i=A,B)對(duì)目標(biāo)的測(cè)量值。
而
κ(k)=[TA×JA(k)-ΤB×JB(k)] (9)
式中
設(shè)則由式(6)可得
ζ(k)β′-f(Ψ′(k),β′)=ζ(k)β+κ(k)(Ψ(k)-Ψ′(k)) (11)
定義
Y(k)=ζ(k)β′-f(Ψ′(k),β′) (12)
則式(11)表示的雷達(dá)測(cè)量數(shù)據(jù)和系統(tǒng)誤差之間的關(guān)系可用量測(cè)方程建模為:
Y(k)=ζ(k)β(k)+ξ(k) (13)
式中ξ(k)表示由量測(cè)噪聲導(dǎo)致的誤差。
(3)在沒有任何先驗(yàn)信息條件下,系統(tǒng)誤差估計(jì)初始狀態(tài)值取為系統(tǒng)誤差估計(jì)的初始協(xié)方差陣Pβ(k|k)為6×6的對(duì)角陣,對(duì)角線上元素的取值根據(jù)目標(biāo)類型、雷達(dá)測(cè)量精度和工程經(jīng)驗(yàn)確定和調(diào)整;
(4)在確定了系統(tǒng)誤差估計(jì)的初始值和初始協(xié)方差陣Pβ(k|k)后,可得系統(tǒng)誤差自適應(yīng)估計(jì)濾波模型如下:
系統(tǒng)誤差估計(jì)的一步預(yù)測(cè)為
協(xié)方差的一步預(yù)測(cè)
Pβ(k+1|k)=F(k)Pβ(k|k)F′(k) (15)
新息協(xié)方差
Sβ(k+1)=ζ(k+1)Pβ(k+1|k)ζ′(k+1)+Rξ(k+1) (16)
其中:Rξ(k+1)為由量測(cè)噪聲導(dǎo)致的誤差的方差,
Rξ(k+1)=κ(k+1)ΣΨκ′(k+1) (17)
而
這里和分別表示雷達(dá)A和雷達(dá)B徑向距離、方位角和俯仰角測(cè)量誤差的方差;
增益
狀態(tài)更新方程
協(xié)方差更新方程
其中:I為6×6的單位陣。