本發(fā)明涉及六自由度串聯(lián)機器人誤差標定方法,特別涉及基于遺傳算法的六自由度串聯(lián)機器人誤差標定方法。
背景技術(shù):
機器人標定技術(shù)是機器人高精度工作的重要環(huán)節(jié)之一。機器人標定保證了機器人能夠準確的完成指定任務。機器人標定以運動學為基礎(chǔ),通過建立誤差模型,誤差參數(shù)辨識,提出誤差補償策略,來保證機器人的精度有所提高。
所謂標定就是應用先進的測量手段和基于模型的參數(shù)識別方法辨識出機器人模型的準確參數(shù),通過采用附加控制算法或修改原來的控制算法來補償機器人誤差,從而提高機器人絕對精度的過程。目前減少誤差的方法主要有兩種:①減少誤差源,改進制造工藝和生產(chǎn)流程,提高制造精度。這種方法成本比較高,有比較大的局限性。②誤差補償法,也就是運動學標定。通過機器人標定技術(shù),能夠使得機器人更加準確的完成任務,提高機器人的工作精度,從而促進生產(chǎn)設(shè)備功能的進步和工業(yè)機器人的發(fā)展。
現(xiàn)有的技術(shù)中已經(jīng)有采用二值法來處理激光跟蹤儀所獲得的數(shù)據(jù),這種方法比較簡單,但是沒辦法處理多數(shù)據(jù),當引入了多變量之后,解算起來相對來說比較困難。當存在一些測量誤差比較大的數(shù)據(jù)時,沒有辦法剔除掉,反而會參與迭代,使得誤差數(shù)據(jù)一直存在在測量數(shù)據(jù)之中,從而得到的誤差參數(shù)有一定的局限性。
另外一種CN105058387A該發(fā)明提出一種僅需激光跟蹤儀設(shè)備就可實現(xiàn)標定的測量方法。采用激光跟蹤儀對機器人進行標定,得到基坐標系與地面靶標坐標系之間的關(guān)系后,只需在實際操作時測量地面靶標位置數(shù)據(jù),即可得到基坐標系位置數(shù)據(jù)。這種方法很直接,不對數(shù)據(jù)進行處理。因此,很有可能引入一些誤差很大的數(shù)據(jù),從而影響了整個數(shù)據(jù)組的準確性。同時,為了獲得更準確的誤差參數(shù),需要更多的數(shù)據(jù),增加了測量難度和時間。
現(xiàn)階段的機器人標定技術(shù),主要分為兩個方面,可以對機器人的絕對精度進行標定,也可以對機器人的重復精度進行標定?,F(xiàn)在多數(shù)的工業(yè)機器人采用示教的方式對機器人機型操控,如今的工業(yè)機器人的主要操作方式也是示教。在示教運行模式下,機器人的重復精度是最為重要的性能指標。只要機器人能夠準確的按照示教程序達到目標位置,那么就可以完成指定任務。
技術(shù)實現(xiàn)要素:
本發(fā)明的目的是為了解決現(xiàn)有技術(shù)無法處理多數(shù)據(jù)得到的誤差參數(shù)有一定的局限性以及引入一些誤差很大的數(shù)據(jù),從而影響了整個數(shù)據(jù)組的準確性增加了測量難度和時間的問題,而提出的基于遺傳算法的六自由度串聯(lián)機器人誤差標定方法。
上述的發(fā)明目的是通過以下技術(shù)方案實現(xiàn)的:
步驟一、建立機器人D-H誤差模型,并引入平行誤差角β來建立機器人的實際模型;
步驟二、根據(jù)機器人的實際模型計算機器人工具中心實際位置PG,根據(jù)PG和機器人機器臂末端的理論位置點P計算機器人的機器人誤差模型即偏差△P:
△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β;
其中,Mθ為關(guān)節(jié)角系數(shù)矩陣;Mα為扭角系數(shù)矩陣;Ma為關(guān)節(jié)偏移量系數(shù)矩陣;Md為連桿偏距系數(shù)矩陣;Mβ為平行誤差角系數(shù)矩陣;△α表示機器人D-H誤差模型中扭角參數(shù)誤差;△θ表示機器人D-H誤差模型中關(guān)節(jié)角參數(shù)誤差;△a表示機器人D-H誤差模型中關(guān)節(jié)偏移參數(shù)誤差;△d表示機器人D-H誤差模型中連桿偏距參數(shù)誤差;△β表示機器人D-H誤差模型中平行誤差角參數(shù)誤差;
步驟三、簡化機器人誤差模型△P的表達方式獲得矩陣等式:
步驟四、使用激光跟蹤儀來獲得機器人末端位置數(shù)據(jù);根據(jù)機器人末端位置數(shù)據(jù)建立誤差優(yōu)化模型:
其中,μ為按照PG-P相加和得到加和后的值;θ1~θ6為關(guān)節(jié)1~6的關(guān)節(jié)角;
步驟五、采用廣義逆矩陣的方法來對偏差△P進行求解,獲得機器人的誤差參數(shù)X;
采用廣義逆矩陣的方式對矩陣等式進行求解即運用滿秩分解法來求解△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β;
將△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β寫成AX=B的形式;矩陣A的廣義逆矩陣記為A+,A+的表達式表示為:
A+=CT(CCT)-1(BTB)-1BT,
其中,A+=AT(AAT)-1;A、B和C為廣義逆矩陣求解過程中的中間變量;X為機器人的誤差參數(shù);
步驟六、根據(jù)機器人的誤差參數(shù)X,采用遺傳算法在PG中尋找機器人的最優(yōu)誤差參數(shù);
步驟七、觀察最優(yōu)誤差參數(shù)是否滿足誤差要求,滿足就輸出最優(yōu)誤差參數(shù)轉(zhuǎn)至步驟八,否則重復步驟六;
步驟八、將獲得的最優(yōu)誤差參數(shù)按照誤差補償策略反饋給機器人。
發(fā)明效果
本發(fā)明結(jié)合了機器人的改進D-H(Denavit-Hartenberg Matrix)誤差模型和遺傳算法來處理機器人的末端位置數(shù)據(jù),并反饋給機器人,從而達到修正機器人重復精度誤差的目的。
本發(fā)明提供了一種基于遺傳算法的六自由度串聯(lián)機器人誤差標定方法,根據(jù)對機器人的D-H模型進行修正,引入平行誤差角,并采用激光跟蹤儀獲得數(shù)據(jù),遺傳算法尋找最優(yōu)解的方法來提高機器人的實際精度。這種方法能夠準確的實現(xiàn)對于機器人誤差參數(shù)的解算,能夠處理眾多數(shù)據(jù)。并且能夠在眾多數(shù)據(jù)中,尋找到最貼近實際的誤差參數(shù)。整個實驗設(shè)備,只需要用激光跟蹤儀來進行機器人末端位置的測量,整個過程方便簡潔。測量結(jié)果準確,穩(wěn)定??梢詫崿F(xiàn)標定過程的簡單性,準確性,能保證標定結(jié)果使得誤差大幅減小。這種方法既有直接測量法的簡單快捷,又相對于最小二乘法,準確穩(wěn)定。同時,通用性好,能夠應用到工業(yè)機器人標定的各個方面。
本發(fā)明提供一種在D-H模型的基礎(chǔ)之上,引入平行誤差角的方法,并采用激光跟蹤儀測量數(shù)據(jù),并用遺傳算法的方法來處理多數(shù)據(jù),解算出機器人實際的誤差參數(shù),并將機器人的誤差參數(shù)反饋給機器人,從而實現(xiàn)了對于機器人誤差的補償。
本發(fā)明提供了用遺傳算法來解算機器人誤差參數(shù)的方法,該方法包括建立機器人誤差模型和采用遺傳算法來處理激光跟蹤儀的數(shù)據(jù)兩部分來實現(xiàn)對機器人誤差的補償。
機器人誤差模型能夠大量的處理激光跟蹤所測量的數(shù)據(jù),能將機器人的實際誤差參數(shù)準確的求解出來,本發(fā)明的有點有以下幾個方面:
一、模型便于求解,適用性很強,適用于六自由度串聯(lián)機器人。在普通的D-H模型的基礎(chǔ)之上引入平行誤差角的概念。使得誤差模型更加具有準確性,能夠準確的反映出機器人的實際誤差與理論誤差的不同,所求得的誤差參數(shù)更加捏緊實際,更加準確。
二、每個位置的誤差源對于機器人誤差的影響程度一目了然,可以根據(jù)誤差模型來改正機器人的實際誤差源。每個部分對于機器人誤差的影響非常明顯,可以依據(jù)誤差模型中反饋的數(shù)據(jù)信息,按照誤差模型的指示改進機器人的誤差參數(shù)。
三、采用遺傳算法處理誤差模型,保證了機器人誤差參數(shù)能夠無限的貼近機器人實際的誤差參數(shù),獲得的解更加準確。由于遺傳算法對于數(shù)據(jù)的要求比較高,數(shù)據(jù)量的要求也比較大,所以獲得的數(shù)據(jù)不會單一的受到某一組壞數(shù)據(jù)的影響。從而使得輸出的數(shù)據(jù)更加準確可靠。
四、由于實際求得的機器人的位置越多,越能反映出機器人在其工作空間內(nèi)的全部工作狀態(tài)。所測量的點覆蓋了機器人基本上所有的機器人的運動空間,誤差模型所獲得的誤差也比較可靠。遺傳算法對于測量過程中大量的點的處理,更加節(jié)省時間,提高效率。
采用了廣義逆矩陣的解算方法,能夠有效的對多變量矩陣進行求解,直接的得到方程的解。節(jié)省中間步驟,提高了數(shù)據(jù)的準確性。
具體數(shù)據(jù)誤差圖如圖4所示,
附圖說明
圖1為具體實施方式一提出的機器人運動學誤差示意圖;
圖2為具體實施方式一提出的機器人坐標系之間的關(guān)系;
圖3為具體實施方式一提出的誤差補償策略流程圖;
圖4為具體實施方式一提出的數(shù)據(jù)誤差圖;其中,橫坐標表示20個點,縱坐標表示誤差標準差之和,1為Original曲線,2為Optimized曲線;
圖5為具體實施方式二提出的機器人坐標系示意圖;
圖6為具體實施方式一提出的六自由度串聯(lián)機器人;其中,1為機械臂末端;
圖7為具體實施方式一提出的激光跟蹤儀。
具體實施方式
具體實施方式一:結(jié)合圖1至圖3和圖6、圖7本實施方式的基于遺傳算法的六自由度串聯(lián)機器人誤差標定方法,具體是按照以下步驟制備的:
步驟一、建立機器人D-H誤差模型,并引入平行誤差角β來建立機器人的實際模型;
步驟二、根據(jù)機器人的實際模型計算機器人工具中心實際位置PG,根據(jù)PG和機器人機器臂末端的理論位置點P(PG理論位置P)計算機器人的機器人誤差模型即偏差△P:
△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β;
其中,Mθ為關(guān)節(jié)角系數(shù)矩陣;Mα為扭角系數(shù)矩陣;Ma為關(guān)節(jié)偏移量系數(shù)矩陣;Md為連桿偏距系數(shù)矩陣;Mβ為平行誤差角系數(shù)矩陣;△α表示機器人D-H誤差模型中扭角參數(shù)誤差;△θ表示機器人D-H誤差模型中關(guān)節(jié)角參數(shù)誤差;△a表示機器人D-H誤差模型中關(guān)節(jié)偏移參數(shù)誤差;△d表示機器人D-H誤差模型中連桿偏距參數(shù)誤差;△β表示機器人D-H誤差模型中平行誤差角參數(shù)誤差;
步驟三、簡化機器人誤差模型△P的表達方式獲得矩陣等式:
步驟四、使用激光跟蹤儀來獲得機器人末端位置數(shù)據(jù),并記錄下來;根據(jù)機器人末端位置數(shù)據(jù)建立誤差優(yōu)化模型:
其中,μ為按照PG-P相加和得到加和后的值;θ1~θ6為關(guān)節(jié)1~6的關(guān)節(jié)角;
步驟五、采用廣義逆矩陣的方法來對偏差△P進行求解,獲得機器人的誤差參數(shù)X;
采用廣義逆矩陣的方式對矩陣等式進行求解即運用滿秩分解法來求解△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β;
將△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β寫成AX=B的形式;矩陣A的廣義逆矩陣記為A+,A+的表達式表示為:
A+=CT(CCT)-1(BTB)-1BT,
其中,A+=AT(AAT)-1;A、B和C為廣義逆矩陣求解過程中的中間變量;X為機器人的誤差參數(shù);
步驟六、根據(jù)機器人的誤差參數(shù)X,采用遺傳算法在PG中尋找機器人的最優(yōu)誤差參數(shù);
使用遺傳算法來處理激光跟蹤儀測量的數(shù)據(jù)從而確定誤差優(yōu)化模型的最優(yōu)解,遺傳算法的處理步驟分為四部分:
步驟七、觀察最優(yōu)誤差參數(shù)是否滿足誤差要求(根據(jù)個人需要設(shè)定),滿足就輸出最優(yōu)誤差參數(shù)轉(zhuǎn)至步驟八,否則重復步驟六;
步驟八、將獲得的最優(yōu)誤差參數(shù)按照誤差補償策略反饋給機器人,從而使得機器人的誤差減小,精度提高。
本實施方式效果:
本實施方式結(jié)合了機器人的改進D-H(Denavit-Hartenberg Matrix)誤差模型和遺傳算法來處理機器人的末端位置數(shù)據(jù),并反饋給機器人,從而達到修正機器人重復精度誤差的目的。
本實施方式提供了一種基于遺傳算法的六自由度串聯(lián)機器人誤差標定方法,根據(jù)對機器人的D-H模型進行修正,引入平行誤差角,并采用激光跟蹤儀獲得數(shù)據(jù),遺傳算法尋找最優(yōu)解的方法來提高機器人的實際精度。這種方法能夠準確的實現(xiàn)對于機器人誤差參數(shù)的解算,能夠處理眾多數(shù)據(jù)。并且能夠在眾多數(shù)據(jù)中,尋找到最貼近實際的誤差參數(shù)。整個實驗設(shè)備,只需要用激光跟蹤儀來進行機器人末端位置的測量,整個過程方便簡潔。測量結(jié)果準確,穩(wěn)定。可以實現(xiàn)標定過程的簡單性,準確性,能保證標定結(jié)果使得誤差大幅減小。這種方法既有直接測量法的簡單快捷,又相對于最小二乘法,準確穩(wěn)定。同時,通用性好,能夠應用到工業(yè)機器人標定的各個方面。
本實施方式提供一種在D-H模型的基礎(chǔ)之上,引入平行誤差角的方法,并采用激光跟蹤儀測量數(shù)據(jù),并用遺傳算法的方法來處理多數(shù)據(jù),解算出機器人實際的誤差參數(shù),并將機器人的誤差參數(shù)反饋給機器人,從而實現(xiàn)了對于機器人誤差的補償。
本實施方式提供了用遺傳算法來解算機器人誤差參數(shù)的方法,該方法包括建立機器人誤差模型和采用遺傳算法來處理激光跟蹤儀的數(shù)據(jù)兩部分來實現(xiàn)對機器人誤差的補償。機器人誤差模型能夠大量的處理激光跟蹤所測量的數(shù)據(jù),能將機器人的實際誤差參數(shù)準確的求解出來,本實施方式的有點有以下幾個方面:
一、模型便于求解,適用性很強,適用于六自由度串聯(lián)機器人。在普通的D-H模型的基礎(chǔ)之上引入平行誤差角的概念。使得誤差模型更加具有準確性,能夠準確的反映出機器人的實際誤差與理論誤差的不同,所求得的誤差參數(shù)更加捏緊實際,更加準確。
二、每個位置的誤差源對于機器人誤差的影響程度一目了然,可以根據(jù)誤差模型來改正機器人的實際誤差源。每個部分對于機器人誤差的影響非常明顯,可以依據(jù)誤差模型中反饋的數(shù)據(jù)信息,按照誤差模型的指示改進機器人的誤差參數(shù)。
三、采用遺傳算法處理誤差模型,保證了機器人誤差參數(shù)能夠無限的貼近機器人實際的誤差參數(shù),獲得的解更加準確。由于遺傳算法對于數(shù)據(jù)的要求比較高,數(shù)據(jù)量的要求也比較大,所以獲得的數(shù)據(jù)不會單一的受到某一組壞數(shù)據(jù)的影響。從而使得輸出的數(shù)據(jù)更加準確可靠。
四、由于實際求得的機器人的位置越多,越能反映出機器人在其工作空間內(nèi)的全部工作狀態(tài)。所測量的點覆蓋了機器人基本上所有的機器人的運動空間,誤差模型所獲得的誤差也比較可靠。遺傳算法對于測量過程中大量的點的處理,更加節(jié)省時間,提高效率。
采用了廣義逆矩陣的解算方法,能夠有效的對多變量矩陣進行求解,直接的得到方程的解。節(jié)省中間步驟,提高了數(shù)據(jù)的準確性。
具體數(shù)據(jù)誤差圖如圖4所示,橫坐標表示20個點,縱坐標表示誤差標準差之和。
具體實施方式二:本實施方式與具體實施方式一不同的是:步驟一中建立機器人D-H誤差模型,并引入平行誤差角β來建立機器人的實際模型具體為:
步驟一一、建立機器人D-H誤差模型,規(guī)定兩個相連的連桿軸線分別為i和i-1;連桿軸線i和i-1的公法線設(shè)為連桿長度ai-1,兩個相連的連桿所形成的夾角設(shè)定為扭角αi-1;當兩條軸線i和i-1平行時,αi-1=0;兩條公法線ai-1和ai距離稱為連桿偏距di,ai-1和ai之間的夾角設(shè)定為關(guān)節(jié)角θi;其中,αi-1的指向定為從軸線i-1繞公垂線轉(zhuǎn)至i的方向;
步驟一二、在機器人D-H誤差模型中,加入平行誤差角β;建立加入了平行誤差角β的機器人模型即機器人的實際模型,使用平行誤差角β來描述當兩個關(guān)節(jié)平行時所產(chǎn)生的誤差;
加入了平行誤差角的機器人模型是有D-H模型中的四個參數(shù)和平行誤差角β組成,其中,實際模型表達式Ti為:
其中,Ti為傳遞矩陣,表示機器人坐標系之間的傳遞關(guān)系,Zi-1表示連桿軸線i-1繞的Z軸,Xi表示繞連桿軸線i-1的X軸;Yi表示連桿軸線i-1的Y軸;θi表示關(guān)節(jié)角;di為連桿偏距;αi為扭角;c為cos;s為sin;βi表示的是第連桿軸線i和i-1之間所產(chǎn)生的平行誤差角,對于不平行的關(guān)節(jié)軸之間,βi等于零;Rot(·)為旋轉(zhuǎn)矩陣;β=β1,β2,β3,...,βi,...,βn;i=1,2,3,...,n,n=6,如圖5。其它步驟及參數(shù)與具體實施方式一相同。
具體實施方式三:本實施方式與具體實施方式一或二不同的是:步驟二中根據(jù)機器人的實際模型計算機器人工具中心實際位置PG,根據(jù)PG和機器人機器臂末端的理論位置點P(PG理論位置P)計算機器人的機器人誤差模型即偏差△P具體為:
步驟二一、根據(jù)機器人的實際模型計算機器人工具中心實際位置PG、將PG和機器人機器臂末端的理論位置點P(PG理論位置P)表示機器人的偏差△P:
PG=P+△P
其中,PG為機器人機器臂末端相對于機器人基坐標系{O}的實際位置,通過激光標定儀直接獲得,{O}為機器人所在的基坐標系,P點是機器人機器臂末端的理論位置,P為機器人的實際模型解算出來的;
那么機器人的偏差△P為:
PG-P=△P;
步驟二二、如果機器人的每個關(guān)節(jié)軸在連桿長度,關(guān)節(jié)角和扭角上都存在誤差,則計算機器人工具坐標系為{f}相對于機器人的基坐標系;
計算機器人工具坐標系{f}相對于機器人基坐標系具體為:
其中,dTi寫成是對矩陣中每一項變量求偏導;Tf為坐標系f傳遞矩陣;為機器人基坐標系到機器人工具坐標系之間的傳遞矩陣;
dTi表達式為:
△i為中間變量;
簡化△i的表達式:
其中,Tθi為機器人D-H模型的關(guān)節(jié)角θi的傳遞矩陣;Tαi為機器人D-H模型扭角αi的傳遞矩陣;Tdi為機器人D-H模型連桿偏距di的傳遞矩陣;Tβi為機器人D-H模型關(guān)節(jié)軸繞著Yi旋轉(zhuǎn)角度βi的傳遞矩陣;
Ti,已知,Ti的各個未知量求偏導數(shù)已知;Tθi,Tαi等表達式:
將Tθi,Tαi的表達式帶入誤差表達式△i,得到關(guān)于偏差△P的表達式:
△P=Mθ△θ+Mα△α+Ma△a+Md△d+Mβ△β
其中:
△θ=[△θ1 △θ2 … △θn]T,
△α=[△α1 △α2 … △αn]T,
△a=[△a1 △a2 … △an]T,
△d=[△d1 △d2 … △dn]T,
△β=[△β1 △β2 … △βn]T;
△θn表示機器人D-H誤差模型中第n軸關(guān)節(jié)角參數(shù)誤差;
△an表示機器人D-H誤差模型中第n軸關(guān)節(jié)偏移參數(shù)誤差;
△dn表示機器人D-H誤差模型中第n軸連桿偏距參數(shù)誤差;
△βn表示機器人D-H誤差模型中第n軸平行誤差角參數(shù)誤差;
△αn表示機器人D-H誤差模型中第n軸扭角參數(shù)誤差。其它步驟及參數(shù)與具體實施方式一或二相同。
具體實施方式四:本實施方式與具體實施方式一至三之一不同的是:步驟四中使用激光跟蹤儀來獲得機器人末端位置數(shù)據(jù),并記錄下來;根據(jù)機器人末端位置數(shù)據(jù)建立誤差優(yōu)化模型具體過程為:
步驟四一、利用激光跟蹤儀獲得機器人末端的位置,根據(jù)有N組機器人末端實際位置和N組機器人末端測量位置數(shù)據(jù)的條件下,分別將N組中每組的誤差按照PG-P相加和得到加和后的值μ;將加和后的值μ作為性能指標來評價模型的優(yōu)劣;
μ表達式為:
步驟四二、將機器人實際的運動空間作為約束條件,建立誤差優(yōu)化模型:
其它步驟及參數(shù)與具體實施方式一至三之一相同。
具體實施方式五:本實施方式與具體實施方式一至四之一不同的是:步驟六中根據(jù)機器人的誤差參數(shù)X,采用遺傳算法在PG中尋找機器人的最優(yōu)誤差參數(shù)具體為:
步驟六一、采用浮點型二進制方法對PG進行編碼,將整數(shù)部分和小數(shù)部分每個數(shù)字按照二進制編碼得到編碼后的數(shù)據(jù);
步驟六二、將N組編碼后的數(shù)據(jù)作為初始種群,設(shè)定初始種群的適應度:誤差越大,其適應度越小,誤差與適應度成反比;
步驟六三、根據(jù)種群的適應度搜索θ1~θ6中的最優(yōu)解;
步驟六四、按照轉(zhuǎn)輪選擇法設(shè)定遺傳操作算法,計算步驟六三中得到的最優(yōu)解得到最優(yōu)誤差參數(shù);
計算機器人實際模型中每個種群的適應度fi(i=1,2,…N),再計算出種群所有個體適應度的總和計算每個個體的積累概率計算種群的累計概率(k=1,2,…N),依次產(chǎn)生若干從0到1之間的數(shù),模擬進化過程;
根據(jù)0到1之間的數(shù)的隨機數(shù)出現(xiàn)的位置,判斷種群中被選定的個體即最優(yōu)誤差參數(shù),將被選中的個體按照交叉操作重新組成一組新的種群。父種群之間單點交叉,交叉概率為0.8。其它步驟及參數(shù)與具體實施方式一至四之一相同。
具體實施方式六:本實施方式與具體實施方式一至五之一不同的是:步驟六二所述初始種群的適應度函數(shù)為:其它步驟及參數(shù)與具體實施方式一至五之一相同。
具體實施方式七:本實施方式與具體實施方式一至六之一不同的是:步驟八中所述獲得的最優(yōu)誤差參數(shù)按照誤差補償策略反饋給機器人具體為:
設(shè)定誤差補償策略,將機器人的實際模型中的參數(shù)記做η和q表達式為:
η=[a1,a2,…an,d1,d2,…dn,α1,α2,…αn,β1,β2,…βn]T
q=[θ1,θ2,…,θn]T
將最優(yōu)誤差參數(shù)△η和△q表示為:
△η=[△a1,△a2,…△an,△d1,△d2,…△dn,△α1,△α2,…△αn,△β1,△β2,…△βn]T
△q=[△θ1,△θ2,…,△θn]T
將η-△η,q-△q替代機器人理論參數(shù),并將運動指令輸入機器人,改正機器人誤差。
在每次誤差標定過程中,都要進行以上四個環(huán)節(jié),對機器人進行建模,采用廣義逆矩陣的方法對機器人進行求解,采用遺傳算法的方式對機器人的數(shù)據(jù)進行處理,將解算出來的機器人誤差參數(shù)反饋給機器人。其它步驟及參數(shù)與具體實施方式一至六之一相同。