phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency[J].Gene,2003,318:103-111.
[0146] [19]Lung S C,Lim B L.Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco(Nicotiana tabacum)is affected by the availability of soluble phytate[J].Plant Soil,2006,279:187-199.
[0147] [20]Ma X F,ffright E,Ge Y X,Bell J,Xi Y J,Bouton J H,ffang Z Y. Improving phosphorus acquisition of white clover(Trifolium repens L.)by transgenic expression of plant-derived phytase and acid phosphatase genes[J] .Plant Sci.,2009,176:479-488.
[0148] [21]Madsen C K,Dionisio G,Holme I B,Holm P B,Brinch_Pedersen H.High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy)gene[J].J.Exp.Bot.,2013,64(11):3111-3123.
[0149] [22]Maougal R T,Bargaz A,Sahel C,Amenc L,Djekoun A,Plassard C,Drevon J J.Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate[J].Planta,2014 [Epub ahead of print,D0I 10.1007/s00425-013-2023-9]·
[0150] [23]Richardson A E,Hadobas P A,Hayes J E.Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J].Plant J.,2001,25(6):641-649.
[0151] [24]Robinson W D,Park J,Tran H T,Del Vecchio H A,Ying S,Zins J L, Patel K,McKnight T D,Plaxton ff C. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphatescavenging by Arabidopsis thaliana[J].J.Exp.Bot.,2012,63(18):6531-6542.
[0152] [25]Rose T J,Impa S M,Rose Μ T,Pariasca-Tanaka J,Mori A,Heuer S, Johnson-Beebout S E,ffissuwa M.Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding[J].Ann.Bot.,2013,112:331-345.
[0153] [26]Schenk G,Ge Y B,Carrington L E,ffynne C J,Searle I R,Carroll B J, Hamilton S,de Jersey J.Binuclear metal centers in plant purple acid phosphatases:Fe-Mn in sweet potato and Fe-Zn in soybean[J] .Arch.Biochem.Biophys.,1999,370:183-189.
[0154] [ 27 ] Sun F,L iang C,Whe 1 an J,Yang J,Zhang P,Lim B L · G1 oba 1 transcriptome analysis of AtPAP2-〇ver expressing Arabidopsis thaliana with elevated ATP[J].BMC Genomics,2013,14:752.
[0155] [28]Teng W,Deng Y,Chen X P,Xu X F,Chen R Y,Lv Y,Zhao Y Y,Zhao X Q,He X, Li B, Tong Y P, Zhang F S, Li Z S. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat[J] ?J.Exp.Bot.,2013,64(5):1403-1411.
[0156] [29]Tran H T,Qian ff Q,Hurley B A,She Y M,ffang D ff,Plaxton ff C.Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana[J].Plant Cell Environ.,2010,33(11):1789-1803.
[0157] [30]Wang J,Sun J H,Miao J,Guo J K,Shi Z L,He M Q,Chen Y,Zhao X Q,Li B,Han F P,Tong Y P,Li Z S.A phosphate starvation response regulator Ta-PHRl is involved in phosphate signaling and increases grain yield in wheat[J] .Ann.Bot.,2013,111:1139-1153.
[0158] [31]ffang L S,Li Z,Qian ff Q,Guo ff L,Gao X,Huang L L,ffang H,Zhu H F,ffu J ff,ffang D ff,Liu D. The Arabidopsis purple acid phosphatase AtPAPIO is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation[J].Plant Physiol.,2011,157:1283-1299.
[0159] [32]ffang X R,ffang Y X,Tian J,Lim B L,Yan X L,Liao H.Overexpressing AtPAP15 enhances phosphorus efficiency in soybean[J].Plant Physiol.,2009,151: 233-240.
[0160] [33]Zamani K,Lohrasebi T,Sabet M S,Malboobi M A,Mousavi A.Expression pattern and subcellular localization of Arabidopsis purple acid phosphatase AtPAP9[J].Gene Expr.Patterns.,2014,14(1):9-18.
【主權(quán)項(xiàng)】
1. 大豆紫色酸性磷酸酶GmPAP36,其特征在于,其氨基酸序列如SEQIDN0:l所示,或該 序列經(jīng)替換、缺失或添加一個(gè)或幾個(gè)氨基酸形成的具有同等功能的氨基酸序列。2. 權(quán)利要求1所述大豆紫色酸性磷酸酶GmPAP36的編碼基因。3. 如權(quán)利要求2所述的基因,其特征在于,其為大豆紫色酸性磷酸酶GmPAP36基因,該基 因的cDNA序列如SEQ ID N0:2所示。4. 含有權(quán)利要求2或3所述基因的載體,其出發(fā)載體包括pCamE、ρΖΥΙΟ 1。5. 含有權(quán)利要求2或3所述基因或權(quán)利要求4所述載體的宿主細(xì)胞或工程菌。6. 權(quán)利要求2或3所述基因在提高轉(zhuǎn)基因植物對環(huán)境中磷元素利用率中的應(yīng)用。7. 根據(jù)權(quán)利要求6所述的應(yīng)用,其特征在于,所述磷元素以有機(jī)態(tài)磷形式存在,優(yōu)選地, 所述有機(jī)態(tài)磷為植酸磷。8. 根據(jù)權(quán)利要求6或7所述的應(yīng)用,其特征在于,所述植物包括擬南芥、大豆。9. 權(quán)利要求2或3所述基因在植物品種改良中的應(yīng)用,其中所述植物包括擬南芥、大豆。10. -種轉(zhuǎn)基因植株的構(gòu)建方法,其特征在于,采用農(nóng)桿菌介導(dǎo)法或花粉管通道法,將 權(quán)利要求4所述的載體轉(zhuǎn)入植物中,篩選轉(zhuǎn)基因植株。
【專利摘要】本發(fā)明提供大豆紫色酸性磷酸酶GmPAP36、其編碼基因及應(yīng)用。本發(fā)明基于抑制性差減雜交技術(shù)構(gòu)建低磷誘導(dǎo)大豆根系cDNA差減文庫,從中選擇低磷脅迫誘導(dǎo)表達(dá)的酸性磷酸酶候選EST,在此基礎(chǔ)上,克隆酸性磷酸酶候選基因序列,采用實(shí)時(shí)定量PCR技術(shù)分析候選基因在植酸磷處理?xiàng)l件下的表達(dá)差異;構(gòu)建基因原核表達(dá)載體,實(shí)現(xiàn)基因原核表達(dá),同時(shí)構(gòu)建基因真核表達(dá)載體,并轉(zhuǎn)化擬南芥、大豆,獲得轉(zhuǎn)基因陽性植株,分析基因GmPAP36的生物學(xué)功能,為植物磷高效轉(zhuǎn)基因育種提供功能基因。
【IPC分類】C12N15/55, C12N9/16, C12N15/82, A01H5/00
【公開號】CN105647884
【申請?zhí)枴?br>【發(fā)明人】張彩英, 李喜煥, 孫星, 段鵬博, 孔佑賓, 杜匯, 李文龍
【申請人】河北農(nóng)業(yè)大學(xué)
【公開日】2016年6月8日
【申請日】2016年2月2日