基于范數(shù)比值正則化的快速圖像盲去模糊方法
【專利摘要】本發(fā)明公開了一種基于范數(shù)比值正則化的快速圖像盲去模糊方法,包括利用范數(shù)比值l1/2/l2的正則化項作為先驗知識,采用多尺度的方法估計出模糊核;利用得到的模糊核k矩陣,通過封閉式的閾值公式的非盲去卷積方法,快速和高質(zhì)量地恢復出原始清晰圖像u。本發(fā)明求模糊核的過程由粗尺度到細尺度逐漸進行,多尺度的算法保證了模糊核函數(shù)計算的準確性和魯棒性;采用范數(shù)比值的先驗模型更逼近自然圖像的梯度分布,使得復原結(jié)果更準確,同時計算效率高,性能要優(yōu)于傳統(tǒng)算法;采用范數(shù)比值正則化先驗作為光滑項,保證求解時能量是下降的;在估計出模糊核后,利用封閉式的閾值公式的非盲去卷積的方法,能夠快速和高質(zhì)量地得到清晰圖像。
【專利說明】基于范數(shù)比值正則化的快速圖像盲去模糊方法
【技術(shù)領(lǐng)域】
[0001] 本發(fā)明涉及計算機圖像處理技術(shù),特別是涉及一種基于范數(shù)比值正則化的快速圖 像盲去模糊方法。
【背景技術(shù)】
[0002] 圖像的模糊一般是在在其獲取過程中由于照相機的移動、手的抖動等一些情況 造成的,我們是通過已知的模糊圖像信息恢復出清晰圖像。圖像的模糊按照模糊核的 性質(zhì)來分類可分為:Blind Image Deconvolution(BID,盲去卷積)和 Non-Blind Image Deconvolution (NBID,非盲去卷積)。BID就是在模糊核未知的情況下恢復出清晰的圖像, 在這種情況下,除了采集到的模糊圖像,沒有其他的任何信息。NBID是在模糊核已知的情況 下恢復出清晰的原始圖像,有了模糊核這個非常重要的信息,去卷積的工作就相對來說容 易多了,主要任務(wù)就是如何在保持細節(jié)的情況下抑制噪聲。一般來說,NBID是BID的基礎(chǔ)。 一旦模糊核估計出來,相應(yīng)的NBID方法都可以在BID中使用。
[0003] 在模糊圖像的形成過程中,模糊圖像是近似等價于清晰圖像與模糊核的卷積:
[0004]
【權(quán)利要求】
1.基于范數(shù)比值正則化的快速圖像盲去模糊方法,其特征在于,包括以下步驟: (1) 輸入模糊圖像; (2) 初始化模糊核k矩陣大小為3 X 3 ; (3) 利用范數(shù)比值11/2/12的正則化項作為先驗知識,采用多尺度的方法,估計出模糊 核: (3a)構(gòu)建求解模型: 給出模糊函數(shù)f,利用離散濾波器^ x = [1,-1],▽ y = [1 ;_1],產(chǎn)生高頻的圖像信息 y= [VTf,VTf],構(gòu)建求解模型:
兵干,k多U,= 1,ki衣不悮糊後k中的元素,X表示高頻領(lǐng)域的未知清晰圖像,q 取1/2,?表示二維的卷積操作; (3b)估計模糊核:采用多尺度估計,每一尺度的運算,都涉及到清晰圖像和模糊核的 插值與更新;插值過程是將粗尺度更新出的清晰圖像X和模糊核k進行上采樣來作為細尺 度的初始值;更新過程包括清晰圖像X的更新和模糊核k的更新的兩個過程;最終迭代得 到模糊核k矩陣; (4) 利用得到的模糊核k矩陣,恢復出原始清晰圖像u : (4a)采用超拉普拉斯模型作為先驗知識,對自然圖像的梯度分布進行近似模擬,建立 圖像非盲求解模型:
(4b)引入輔助項d = ▽ u,將變量u與梯度變換分離,進行分步求解,定義
?中i = 1,2,且= [1,-1],f2 = [1 ;-1],并加入權(quán)衡參數(shù)β,整理 模型為:
厙: 將上式對d求微分,利用封閉式的閾值公式去卷積的方法,選取q = 1/2時的閾值公 式: 其中
變量u和V的交互迭代,迭代條件為:β的初始值設(shè)為1,β的最大值設(shè)為256, β在 迭代過程中以
的倍數(shù)遞增,直到β > 256結(jié)束,最終恢復出清晰圖像。
2.根據(jù)權(quán)利要求1所述的基于范數(shù)比值正則化的快速圖像盲去模糊方法,其特征在 于,所述步驟(3)中, 對于清晰圖像X的更新,選擇TV_L1求解,求解模型是:
仕別7肓晰_家X史新的過? Ψ,采用分裂的方法,引入輔助變量v = Λ- ?和權(quán)衡參 數(shù)Θ,并整理求解模型:
在每一步迭代時,將λ I |x| |2看成是一個常數(shù),利用分裂方法和小波閾值的方法迭代 求解出清晰圖像X :
式中,Xk+1表示第k+Ι步的X值; 對于模糊核k的更新,選擇TV L2求解,求解模型是:
模糊核k的求解采用IRLS方法,在求解過程中將模糊核k矩陣中值為負數(shù)的元素設(shè)為 〇,然后重新規(guī)范化,具體過程為:在第一次迭代中執(zhí)行IRLS,權(quán)重Ψ的值來自于上一步更 新的k,內(nèi)部迭代采用共軛梯度法,根據(jù)尺度由粗到細的過程,求解出模糊核k矩陣。
【文檔編號】G06T5/00GK104112261SQ201410342554
【公開日】2014年10月22日 申請日期:2014年7月17日 優(yōu)先權(quán)日:2014年7月17日
【發(fā)明者】余義斌, 彭念, 甘俊英 申請人:五邑大學