本發(fā)明涉及焦化柴油加氫脫硫精制工藝,具體涉及一種采用特定催化劑進行的焦化柴油加氫精制工藝。
背景技術(shù):
延遲焦化工藝是以重質(zhì)油,例如減壓渣油、裂化渣油等為原料,在高溫(約500℃)條件下進行的熱裂化和縮合反應(yīng),生產(chǎn)出氣體、汽油、柴油、蠟油和石油焦。
焦化柴油的硫含量、烯烴含量高,十六烷值高于催化柴油,但很不穩(wěn)定,易變色(氧化),雜質(zhì)多,經(jīng)過穩(wěn)定后的焦化柴油只能作為半成品,一般需經(jīng)過加氫精制,除去其中含氮、含硫化合物及二烯烴,才可用作車用柴油調(diào)合組分或作為石油化工原料使用。
焦化柴油的含硫量一般在1.0%左右甚至更高,也就是10000ppm以上,如此高的含硫量嚴重限制了焦化柴油的使用。因此必須對焦化柴油進行處理,以脫除如此之高的硫含量。
現(xiàn)有的除硫工藝中,加氫精制因環(huán)境友好技術(shù)成熟,已經(jīng)得到廣泛的應(yīng)用,但現(xiàn)有的加氫過程針對的原料中,硫含量多在幾百ppm級別,對于高達1萬ppm的含硫量,現(xiàn)有的加氫精制過程采用的催化劑,難以適應(yīng)如此高的含硫量,一般會存在兩個問題:一是催化劑的活性下降快,裝置在處理其他原料的工況下催化劑的使用周期都可以達到6a(6年)甚至更長,但在處理焦化柴油之后,催化劑的使用周期只有1-2a。頻繁的更換催化劑嚴重的影響了裝置的經(jīng)濟效益。二是裝置反應(yīng)器床層壓力降升高得很快,在處理焦化柴油3-6個月之后裝置就由于反應(yīng)器壓力降達到指標的上限而被迫停工。通過對同類裝置的調(diào)研發(fā)現(xiàn),在焦化柴油加氫精制過程中都不同程度地存在著反應(yīng)器壓力降升高過快的現(xiàn)象。
經(jīng)過分析發(fā)現(xiàn),現(xiàn)有的加氫精制采用的催化劑用于焦化柴油加氫精制時,催化劑的金屬組分損失較大,說明催化劑上活性組分減少,同時孔容變小很多,導(dǎo)致反應(yīng)物與催化劑接觸面積下降,這都直接反應(yīng)在催化劑活性的下降上。同時,焦化柴油在生產(chǎn)乙烯料、重整料和合成氨料時,均要求較高的操作苛刻度,加氫深度高,導(dǎo)致催化劑床層積碳加劇,壓力降迅速上升。而當(dāng)壓力降上升到設(shè)備允許的上限0.38MPa時,就必須對催化劑床層進行處理。
因此如何提供焦化柴油精制工藝,采用改進的催化劑能有效將焦化柴油中的硫含量控制在5ppm以下,以符合國五要求,并提高使用壽命,是本領(lǐng)域面臨的一個難題。
技術(shù)實現(xiàn)要素:
本發(fā)明的目的在于提出一種焦化柴油加氫脫硫精制工藝,該工藝可以將焦化柴油中的總硫含量降低到5ppm以下,并將催化劑使用壽命提高到8a以上。
為達此目的,本發(fā)明采用以下技術(shù)方案:
一種焦化柴油加氫精制工藝,所述工藝采用固定床反應(yīng)器,固定床反應(yīng)器中裝填有加氫催化劑,所述催化劑包括載體和活性組分。
所述載體為合成骨架結(jié)構(gòu)中摻入雜原子Cu2+的MCM-41。
所述活性組分為氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合物。
所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4的混合物。
所述固定床反應(yīng)器的反應(yīng)條件為:反應(yīng)溫度為300-450℃,氫分壓為6-9MPa,氫油體積比450-700,體積空速1.5-3h-1。
MCM-41是有序介孔材料,其孔道呈六方有序排列、大小均勻,孔徑尺寸可隨合成時加入導(dǎo)向劑及合成件的不同在1.5~10nm之間變化,晶格參數(shù)約4.5nm,比孔容約1mL/g,MCM-41孔徑均勻,具有較高的比表面積(1000m2/g)和大的吸附容量(0.7mL/g),有利于有機分子的自由擴散。本發(fā)明經(jīng)過在眾多介孔材料中,比如MCM-22、MCM-36、MCM-48、MCM-49、MCM56,進行對比試驗選擇,發(fā)現(xiàn)只有MCM-41能夠達到本發(fā)明的發(fā)明目的,其他介孔材料都有這樣那樣的缺陷,在應(yīng)用到本發(fā)明中時存在難以克服的技術(shù)困難,因此本發(fā)明選擇用MCM-41作為載體基礎(chǔ)。
純硅MCM-41本身酸性很弱,直接用作催化劑活性較低。因此,本發(fā)明對其進行改性,以增加其催化活性。本發(fā)明對MCM-41介孔分子篩改性的途徑是:向成品的全硅MCM-41介孔分子篩孔道內(nèi)表面引入Cu2+,這種途徑可以通過離子交換將Cu2+負載在MCM-41的內(nèi)表面,從而在整體上改善了MCM-41介孔分子篩的催化活性、吸附以及熱力學(xué)穩(wěn)定性能等。
盡管對MCM-41介孔分子篩進行改性的方法或途徑很多,發(fā)明人發(fā)現(xiàn),本發(fā)明的催化劑只能采用摻雜Cu2+的MCM-41作為載體才能實現(xiàn)硫含量控制效果,發(fā)明人嘗試了在MCM-41中摻雜Al3+、Fe3+、Zn2+、Ga3+等產(chǎn)生陰離子表面中心的離子,發(fā)現(xiàn)都不能實現(xiàn)所述效果。盡管所述機理目前并不清楚,但這并不影響本發(fā)明的實施,發(fā)明人根據(jù)已知理論與實驗證實,其與本發(fā)明的活性成分之間存在協(xié)同效應(yīng)。
所述Cu2+在MCM-41中的摻雜量必須控制在特定的含量范圍之內(nèi),其摻雜量以重量計,為MCM-41重量的0.56%-0.75%,例如0.57%、0.58%、0.59%、0.6%、0.61%、0.62%、0.63%、0.64%、0.65%、0.66%、0.67%、0.68%、0.69%、0.7%、0.71%、0.72%、0.73%、0.74等。
發(fā)明人發(fā)現(xiàn),在該范圍之外,會導(dǎo)致焦化柴油脫硫效果的急劇降低。更令人欣喜的是,當(dāng)Cu2+在MCM-41中的摻雜量控制在0.63%-0.72%范圍內(nèi)時,其脫硫能力最強,當(dāng)繪制以Cu2+摻雜量為橫軸,以目標脫硫效果為縱軸的曲線圖時,該含量范圍內(nèi)硫含量能控制在極低的范圍之內(nèi),其產(chǎn)生的脫硫效果遠遠超出預(yù)期,屬于預(yù)料不到的技術(shù)效果。
所述活性組分的總含量為載體MCM-41重量的1%-15%,優(yōu)選3-12%,進一步優(yōu)選5-10%。例如,所述含量可以為2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。
本發(fā)明中,特別限定活性組分為氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合比例,發(fā)明人發(fā)現(xiàn),不同的混合比例達到的效果完全不同。發(fā)明人發(fā)現(xiàn),氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合比例(摩爾比)為1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的摩爾比在該范圍內(nèi),才能夠?qū)崿F(xiàn)焦化柴油中含硫量控制在10ppm以下且脫氮能力顯著。也就是說,本發(fā)明的四種活性組分只有在摩爾比為1:(0.4-0.6):(0.28-0.45):(0.8-1.2)時,才具備協(xié)同效應(yīng)。除開該摩爾比范圍之外,或者省略或者替換任意一種組分,都不能實現(xiàn)協(xié)同效應(yīng)。
優(yōu)選的,氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的摩爾比為1:(0.45-0.5):(0.35-0.45):(0.8-1.0),進一步優(yōu)選為1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最優(yōu)選1:0.48:0.42:0.95。
本發(fā)明的目的之三在于提供所述催化劑的助催化劑。本發(fā)明所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4(磷酸鈮)的混合物。
盡管在加氫精制特別是加氫脫硫領(lǐng)域,已經(jīng)有成熟的催化助劑,比如P、F和B等,其用于調(diào)節(jié)載體的性質(zhì),減弱金屬與載體間強的相互作用,改善催化劑的表面結(jié)構(gòu),提高金屬的可還原性,促使活性組分還原為低價態(tài),以提高催化劑的催化性能。但上述P、F和B催化助劑在應(yīng)用與本發(fā)明的載體與活性組分時,針對高硫組分,其促進催化脫硫/精制的作用了了。
本發(fā)明經(jīng)過在眾多常用助催化劑組分,以及部分活性組分中進行遴選、復(fù)配等,最終發(fā)現(xiàn)采用TiO2、CeO2、V2O5和NbOPO4(磷酸鈮)的混合物對本發(fā)明的催化劑促進作用明顯,能顯著提高其水熱穩(wěn)定性,并提高其防結(jié)焦失活能力,從而提高其使用壽命。
所述TiO2、CeO2、V2O5和NbOPO4之間沒有固定的比例,也就是說,TiO2、CeO2、V2O5和NbOPO4每一種各自的含量達到有效量即可。優(yōu)選的,本發(fā)明采用的TiO2、CeO2、V2O5和NbOPO4各自的含量均為(分別為)載體質(zhì)量的1-7%,優(yōu)選2-4%。
盡管本發(fā)明所述的催化助劑之間沒有特定的比例要求,但每一種助劑必須能夠達到有效量的要求,即能夠起到催化助劑作用的含量,例如載體質(zhì)量的1-7%。本發(fā)明在遴選過程中發(fā)現(xiàn),省略或者替換所述助劑中的一種或幾種,均達不到本發(fā)明的技術(shù)效果(提高水熱穩(wěn)定性,減少結(jié)焦提高使用壽命),也就是說,本發(fā)明的催化助劑之間存在特定的配合關(guān)系。
事實上,本發(fā)明曾經(jīng)嘗試將催化助劑中的磷酸鈮NbOPO4替換為五氧化二妮Nb2O5,發(fā)現(xiàn)盡管助劑中也引入了Nb,但其技術(shù)效果明顯低于磷酸鈮NbOPO4,其不僅水熱穩(wěn)定性稍差,其催化劑床層結(jié)焦相對快速,從而導(dǎo)致催化劑孔道堵塞,催化劑床層壓降上升相對較快。本發(fā)明也曾嘗試引入其他磷酸鹽,但這種嘗試盡管引入了磷酸根離子,但同樣存在水熱穩(wěn)定性相對稍差,其催化劑床層結(jié)焦相對快速,從而導(dǎo)致催化劑孔道堵塞,催化劑床層壓降上升相對較快。
盡管本發(fā)明引入催化助劑有如此之多的優(yōu)勢,但本發(fā)明必須說明的是,引入催化助劑僅僅是優(yōu)選方案之一,即使不引入該催化助劑,也不影響本發(fā)明主要發(fā)明目的的實施。不引入本發(fā)明的催化助劑特別是磷酸鈮,其相較于引入催化助劑的方案,其缺陷僅僅是相對的。即該缺陷是相對于引入催化助劑之后的缺陷,其相對于本發(fā)明之外的其他現(xiàn)有技術(shù),本發(fā)明所提及的所有優(yōu)勢或者新特性仍然存在。該催化助劑不是解決本發(fā)明主要技術(shù)問題所不可或缺的技術(shù)手段,其只是對本發(fā)明技術(shù)方案的進一步優(yōu)化,解決新的技術(shù)問題。
所述催化劑的制備方法可以采取常規(guī)的浸漬法以及其他替代方法,本領(lǐng)域技術(shù)人員可以根據(jù)其掌握的現(xiàn)有技術(shù)自由選擇,本發(fā)明不再贅述。
優(yōu)選的,所述固定床反應(yīng)器的反應(yīng)條件為:320-350℃,氫分壓為7.8-8.3MPa,氫油體積比450-550,體積空速1.5-2h-1。
優(yōu)選的,所述工藝流程包括,裝置主要包括原料預(yù)分餾部分(脫水和切尾)、反應(yīng)部分和分餾部分。
1、原料預(yù)分餾部分
從罐區(qū)來的原料油經(jīng)原料油過濾器除去大于25μm的固體顆粒,與預(yù)分餾塔頂汽換熱升溫后,與預(yù)分餾塔中段回流液換熱升溫,然后與預(yù)分餾塔底重油換熱升溫,最后經(jīng)預(yù)分餾塔進料加熱爐加熱進入原料油預(yù)分餾塔(脫水),塔頂汽經(jīng)冷凝后進入預(yù)分餾塔頂回流罐并分離為柴油和含油污水,一部分柴油作塔頂回流使用,一部分柴油作加氫單元原料使用;預(yù)分餾塔(脫水)的拔頭油由塔底排出,再經(jīng)過換熱和加熱爐加熱后進入預(yù)分餾塔(切尾),預(yù)分餾塔(切尾)底重油,作為瀝青出裝置,而其他餾出餾分混合后作加氫單元原料使用。
2、反應(yīng)部分
經(jīng)過預(yù)處理后的煤焦油進入加氫原料油緩沖罐,原料油緩沖罐用燃料氣氣封。自原料油緩沖罐來的原料油經(jīng)加氫進料泵增壓后,在流量控制下與混合氫混合,經(jīng)反應(yīng)流出物/反應(yīng)進料換熱器換熱后,然后經(jīng)反應(yīng)進料加熱爐加熱至反應(yīng)所需溫度,進入加氫改質(zhì)反應(yīng)器,反應(yīng)器間設(shè)有注急冷氫設(shè)施。
自反應(yīng)器出來的反應(yīng)流出物經(jīng)反應(yīng)流出物/反應(yīng)進料換熱器、反應(yīng)流出物/低分油換熱器、反應(yīng)流出物/反應(yīng)進料換熱器依次與反應(yīng)進料、低分油、反應(yīng)進料換熱,然后經(jīng)反應(yīng)流出物空冷器及水冷器冷卻,進入高壓分離器。為了防止反應(yīng)流出物中的銨鹽在低溫部位析出,通過注水泵將沖洗水注到反應(yīng)流出物空冷器上游側(cè)的管道中。
冷卻后的反應(yīng)流出物在高壓分離器中進行油、氣、水三相分離。高分氣(循環(huán)氫)經(jīng)循環(huán)氫壓縮機入口分液罐分液后,進入循環(huán)氫壓縮機升壓,然后分兩路:一路作為急冷氫進反應(yīng)器;一路與來自新氫壓縮機的新氫混合,混合氫與原料油混合作為反應(yīng)進料。含硫、含氨污水自高壓分離器底部排出至酸性水汽提裝置處理。高分油相在液位控制下經(jīng)減壓調(diào)節(jié)閥進入低壓分離器,其閃蒸氣體排至工廠燃料氣管網(wǎng)。
低分油經(jīng)換熱后進入分餾塔。入塔溫度用反應(yīng)流出物/低分油換熱器旁路調(diào)節(jié)控制。
新氫經(jīng)新氫壓縮機入口分液罐經(jīng)分液后進入新氫壓縮機,經(jīng)兩級升壓后與循環(huán)氫混合。
3、分餾部分
從反應(yīng)部分來的低分油經(jīng)換熱器換熱進入分餾塔。塔底設(shè)重沸爐,塔頂油氣經(jīng)塔頂空冷器和水冷器冷凝冷卻至40℃,進入分餾塔頂回流罐進行氣、油、水三相分離。閃蒸出的氣體排至燃料氣管網(wǎng)。含硫含氨污水與高分污水一起送出裝置。油相經(jīng)分餾塔頂回流泵升壓后一部分作為塔頂回流,一部分作為粗柴油去穩(wěn)定塔。
從分餾塔頂回流罐來的粗柴油經(jīng)穩(wěn)定柴油(精制石腦油)/粗柴油換熱后進入柴油穩(wěn)定塔。穩(wěn)定塔塔頂油氣經(jīng)穩(wěn)定塔頂水冷器冷凝冷卻至40℃,進入穩(wěn)定塔頂回流罐進行氣、油、水三相分離。閃蒸出的氣體排至燃料氣管網(wǎng)。含硫含氨污水與高分污水一起送出裝置。油相經(jīng)穩(wěn)定塔頂回流泵升壓后大部分作為塔頂回流,小部分作為輕油排入不合格油中出裝置。塔底穩(wěn)定柴油作為石腦油去罐區(qū)。
為了抑制硫化氫對塔頂管道和冷換設(shè)備的腐蝕,在分餾塔和穩(wěn)定塔塔頂管道采用注入緩蝕劑措施。緩蝕劑自緩蝕劑罐經(jīng)緩蝕劑泵注入塔頂管道。
分餾塔塔底精制油經(jīng)精制油泵增壓后與低分油換熱,然后進入柴油空冷器冷卻至50℃后出裝置作為優(yōu)質(zhì)燃料油去罐區(qū)。
優(yōu)選的,所述固定床反應(yīng)器包括1-5個催化劑床層,進一步優(yōu)選2-3個催化劑床層。
本發(fā)明的加氫精制工藝通過選取特定的催化劑,所述催化劑通過摻入雜原子Cu2+的MCM-41作為載體,以及選取特定比例的氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC作為活性成分,所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4的混合物,使得該催化劑產(chǎn)生協(xié)同效應(yīng),對焦化柴油的加氫脫硫能控制在總硫含量低于5ppm,同時減少了催化劑活性成分的流失及焦炭的形成,使得催化劑的使用壽命能夠達到8a以上。
具體實施方式
本發(fā)明通過下述實施例對本發(fā)明的加氫精制工藝進行說明。
實施例1
通過浸漬法制備得到催化劑,載體為摻雜Cu2+的MCM-41,Cu2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.65%。所述活性組分氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的總含量為載體質(zhì)量的10%,其摩爾比為1:0.4:0.3:0.8。
將所述催化劑裝填入固定床反應(yīng)器,所述反應(yīng)器的反應(yīng)管由內(nèi)徑50mm的不銹鋼制成,催化劑床層設(shè)置為3層,催化劑床層溫度用UGU808型溫控表測量,原材料焦化柴油由北京衛(wèi)星制造廠制造的雙柱塞微量泵連續(xù)輸送,氫氣由高壓氣瓶供給并用北京七星華創(chuàng)D07-11A/ZM氣體質(zhì)量流量計控制流速,催化劑裝填量為2kg。反應(yīng)后的產(chǎn)物經(jīng)水浴室溫冷卻后進行氣液分離。
所用原料為委內(nèi)瑞拉焦化柴油,其含硫量高達10300ppm。
控制反應(yīng)條件為:340℃,氫分壓為8.0MPa,氫油體積比500,體積空速2h-1。
測試最終的產(chǎn)品,總硫含量降低到5ppm,裝置運行半年之后,催化劑床層壓力降無任何變化。
實施例2
通過浸漬法制備得到催化劑,載體為摻雜Cu2+的MCM-41,Cu2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.7%。所述活性組分氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的總含量為載體質(zhì)量的10%,其摩爾比為1:0.6:0.45):1.2。
其余條件與實施例1相同。
測試最終的產(chǎn)品,總硫含量降低到4ppm,裝置運行半年之后,催化劑床層壓力降無任何變化。
對比例1
將實施例1的載體替換為γ-Al2O3,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到32ppm,催化劑床層壓力降上升超過5%。
對比例2
將實施例1的載體替換為未摻雜的MCM-41,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到29ppm,催化劑床層壓力降上升超過5%。
對比例3
將實施例1的Cu2+替換為Zn2+,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到27ppm,催化劑床層壓力降上升超過5%。
對比例4
將實施例1中的Cu2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.5%,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到33ppm,催化劑床層壓力降上升超過5%。
對比例5
將實施例1中的Cu2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.8%,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到35ppm,催化劑床層壓力降上升超過5%。
實施例1與對比例1-5表明,本申請采用的特定含量范圍和特定負載金屬離子的MCM-41載體,當(dāng)替換為本領(lǐng)域的其他已知載體時,或者載體相同但Cu2+摻雜量不同時,均達不到本發(fā)明的技術(shù)效果,因此本發(fā)明的特定含量范圍的Cu2+摻雜MCM-41載體與催化劑其他組分之間具備協(xié)同效應(yīng),所述加氫精制工藝產(chǎn)生了預(yù)料不到的技術(shù)效果。
對比例6
省略實施例1中的MO2N,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到27ppm,催化劑床層壓力降上升超過5%。
對比例7
省略實施例1中的WC,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到22ppm,催化劑床層壓力降上升超過5%。
上述實施例及對比例6-7說明,本發(fā)明的加氫精制工藝的催化劑幾種活性組分之間存在特定的聯(lián)系,省略或替換其中一種或幾種,都不能達到本申請的特定效果,證明其產(chǎn)生了協(xié)同效應(yīng)。
實施例3
催化劑中含有催化助劑TiO2、CeO2、V2O5和NbOPO4,其含量分別為1%、1.5%、1%和3%,其余與實施例1相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降無任何變化,相較于同樣使用時間實施例1的催化劑床層壓降減少10%。
對比例8
相較于實施例3,將其中的NbOPO4省略,其余條件相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降升高,相較于同樣使用時間實施例1的催化劑床層壓降只減少2%。
對比例9
相較于實施例3,將其中的CeO2省略,其余條件相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降升高,相較于同樣使用時間實施例1的催化劑床層壓降只減少2%。
實施例3與對比例8-9表明,本發(fā)明的催化助劑之間存在協(xié)同關(guān)系,當(dāng)省略或替換其中一個或幾個組分時,都不能達到本發(fā)明加入催化助劑時的減少結(jié)焦從而阻止催化劑床層壓降升高的技術(shù)效果。即,其驗證了本發(fā)明的催化助劑能夠提高所述催化劑的使用壽命,而其他催化助劑效果不如該特定催化助劑。
申請人聲明,本發(fā)明通過上述實施例來說明本發(fā)明的工藝,但本發(fā)明并不局限于上述工藝,即不意味著本發(fā)明必須依賴上述詳細催化劑才能實施。所屬技術(shù)領(lǐng)域的技術(shù)人員應(yīng)該明了,對本發(fā)明的任何改進,對本發(fā)明產(chǎn)品各原料的等效替換及輔助成分的添加、具體方式的選擇等,均落在本發(fā)明的保護范圍和公開范圍之內(nèi)。